

An integrated modelling system for long term planning of water resources management and Global Change adaptation

LIFE07 ENV/E/000845

Context and overview

- Approach and tool
- Scenario of global change
- Impacts of global change on water resources
- Adaptation strategies and cost benefit analysis
- Conclusion

Issues: Global change / Impacts / Adaptation

Global Change

- Increasing change and high uncertainty
- Influence water quality and quantity
- Climate Change Land use Water demand

Impacts Increasing water deficit

Socio economic consequences

Adaptation

- Long term planning to limit the impact
- \rightarrow how to plan 15, 30 years ahead?

- Scenario based planning
- Modelling of impacts Water Change Modelling System
- Cost Benefit Analysis

Context and overview – Characteristics of the project

- Objectives: 1/ Develop a general methodology and a tool
 2/ Apply them to the Llobregat River Basin
- **Funding:** LIFE+
- **Duration:** 2009 to 2011 (3 years)
- Participants:

- Stakeholders involved:
 - 7 Spanish River Basin Agencies
 - Spanish Office of Climate Change
 - Private companies (Agbar, Iberdrola)
 - Other regional institutions

Context and overview

- Scenarios of global change
- Impact of global change on water resources
- Adaptation strategies and cost benefit analysis
- Conclusion

- Creation of Global Change scenarios by combining together the factors of change
- Tool development combining different models to simulate the impact of global change on water resources
- Analysis of vulnerability of current management system (supply reliability...)
- Adaptation strategies to reduce the impact of global change
- Generic tool improving and making quicker all steps

- River basin
 - Area: 4948 km²
 - 4 main aquifers
- Infrastructures and uses
 - 3 large dams (Total 213 hm3)
 - Canales
 - 2 DWTP(>3 m³/s)
 - Supplies more than 3 millon inhabitants
- Projections
 - Decrease in water availability
 - Increase in demand

- Context and overview
- Approach and tool

Scenarios of global change

- Impacts of global change on water resources
- Adaptation strategies and cost benefit analysis
- Conclusion

Scenario of global change – Climate scenarios

2 methodologies:

- 1. Climate projections + hydrological model
- 2. Modification of historic sub-basin discharge according to possible change

Climate projections

- SMC and FIC (AEMET) projections, SRES A2, B1 (SMC) y A2, B2 (FIC); Time horizon: 2010 2100
- Correction of projection

Precipitation and temperature at the basin scale

Result of hydrological model

%					
5°					
%					

Change in average water availability (+1% to -39%)

Time series of sub-basins discharges for 3 future periods

Scenario of global change – Climate scenarios

Modification of historic sub-basin discharge

- Decrease of average water availability (-5% to -20%)
- Increase of seasonal and year to year variation
- Time series of sub-basin discharges for different hypothesis of changes

Climate Change Scenarios:

- A. Group of 12 projections based scenarios → +1% to -39% WA
- B. Group of 8 hypothesis based scenarios \rightarrow -5% to -20% WA

Scenario of global change – Land use scenarios

Use of land use projection

- EURURALIS
- 2000 2030
- Scenarios A1 A2 B1 B2

 \rightarrow Main change: up to15% increase in forest in the head waters

Forest increase impact on run off:

 \rightarrow Up to -4% runoff by 2100

Land use Scenarios:

- A. No significant change in head water sub basins
- B. Increase of forest area in the head water sub basins
 - \rightarrow decrease of runoff (4%)

Scenario of global change – Water demand scenarios

Domestic demand (80% total)

- Demography (Idescat)
 - 2027: from +6% to + 24%
 - 2050: from +7% to 42%
 - 2100 almost stable since 2050
- Climate change
 - Up to 12% increase of WD in 2100
- Behavioural changes:
 - Up to 10% decrease in WD
- No change in industrial and agricultural demand

Water demand scenarios: Change in domestic water demand → 5 scenarios from -3% to +50% (From -3% to +20% in 2027, from -30% to -50% in 2100)

Scenario of global change

65 scenarios of Global Change

Change in <u>land use</u> and <u>climate</u> →Hydrological Model → <u>inflows</u>

Change in <u>water demanda</u> and <u>inflows</u>
→ Management model→ results

- Context and overview
- Approach and tool
- Scenarios of global change

Impact of global change on water resources

- Adaptation strategies and cost benefit analysis
- Conclusion

IMPACT OF GLOBAL CHANGE ON WATER RESOURCES

Issues to focus on – related indicators?

Deficit in water resources for consumptive demand

15 Indicators:

- Annual reliability
- Monthly reliability
- Annual resilience
- Maximum 1-year deficit
- Maximum 10-year deficit
- Mean annual deficit
- Number of months in state of alert
- ...

Sustainable extraction threshold from the aquifer to avoid sea water intrusion and insure satisfying quality

IMPACT OF GLOBAL CHANGE ON WATER RESOURCES

Déficit medio anual para la demanda total de la cuenca

65 escenarios

Demandas urbanas + agrícolas + ambientales

Peor caso: 30% de la demanda no podría ser satisfecha en 2100

IMPACT OF GLOBAL CHANGE ON WATER RESOURCES

Impact on aquifer recharge

	Scenario				
Recharge (hm³/year)	Reference	Low change	Medium change	High change	
River	13.53	12.01	6.49	2.1	
Lateral	12.94	12.41	12.12	12.15	
Precipitacion	0.42	0.33	0.28	0.29	
Irrigation	5.58	5.31	5.18	5.21	
Urban areas	2.07	2.07	2.07	2.07	
Total	34.54	32.13	26.14	21.82	
Variation of recharge	-	-7.0%	-24.3%	-36.8%	
Sustainable extraction	40 E	38.1	32.1	27.8	
(hm3 / year)	40.3				

- Context and overview
- Approach and tool
- Scenarios of global change
- Impact of global change on water resources

Adaptation strategies and cost benefit analysis

Conclusion

Methodology – Cost benefit analysis

"All of the measures proposed generate Costs linked to their implementation and operation, and Benefits as protection against social, economic and environmental impact of droughts."

Adaptation measures applied to the Llobregat.

PERMANENT MEASURES	Maximum potential (hm3/year)	Average unit cost (euros/m3)	Assumptions and remarks			
Recharge of the Vall Baixa aquifer at Santa Coloma Cervelló	2,20	> 0,05	the infiltered PERMANENT	Maxi	mum	Average unit
Seasonal tariff	3,51	0,07	15% price inc months. New MEASURES	pote	ntial	cost (euros/m3)
Modernisation of irrigation techniques in CR Dreta Canal	13,00	0,07		(nm <i>3/</i>)	year)	
Quality improvement in Anoia River	11,00	0,22	A number of Recharge of the Vall Baixa		2,20	> 0,05
Reuse projects for industrial and municipal uses	28,59	0,23	It considers a aquiller at Santa Colonia Cervello included in the catalan water reuse planning.			
Salt water intrusion barrier	8,00	> 0,24	Net increase of water available in the aquifer			
Transfer from the Rhone River	190,00	> 0,45	The cost inclu plant. Transfer from the Rhone River		190,00	> 0,45
Desalination plant in El Prat	60,00	> 0,47	Cost includes taken from the River Basin Management Plan of Catalan Water Agency.			
Grey water reuse systems at homes	24,87	1,52	It is part of a larger adaptation measure focused on improvements in dome efficiency. The Metropolitan A	estic water use		-
TEMPORARY MEASURES	Maximum potential (hm3/year)	Average unit cost (euros/m3)	Desalination plant in El Prat		60,00	> 0,47
Conservation-oriented increase in water price	34,00	0,01	30% price increase in exceptionality scenario; 50% price increase in emer Elasticity of demand is set at -0.28.	gency scenario.		
Reduction/Stop in non- essential municipal uses	12,73	0,03	Limiting in case of drought of the municipal uses in landscape irrigation of public pool	treat cleaning		
Market of tradable usage rights	20,87	1,14	Possibility t Water conveyance by ship		20,00	> 13,22
Water conveyance by ship	20,00	> 13,22	Last resort.			
Remark: the unit costs h	nave been calculate	ed as if the measure i	s used at its 100% of potential capacity (the situation where costs are minin	num)		

How to chose to right measures to be implemented?
 For each scenario: <u>lower costs</u> and no deficit
 To chose the adequate group of measures, focus on:

• Which is the *most efficient* measure combination?

• What is the *cost of adaptation*? (based on simulations with the management model)

What are the benefits (*avoided* costs) of adaptation?

• Are **benefits** higher than costs?

- Benefits of adaptation (avoided costs), we must quantify:
 - Non-market effects: loss of "welfare" caused by drought.
 Market effects: production losses.
- For non-market effects (social cost only), we use AquaMoney results data (eg.: survey data about «how much would you be willing to pay to avoid water supply cuts?»)
- For market effects (economic cost), we use an input-output model to simulate the effect of water shortages on productive sectors of the Catalan economy in particular: direct and indirect effects.

- Context and overview
- Approach and tool
- Scenarios of global change
- Impact of global change on water resources
- Adaptation strategies and cost benefit analysis

Conclusion

Conclusions

Methodology to analyze Global Change impacts

- Global Change scenarios creation by use of projections and expert hypothesis
- Multiple scenarios and sequential **simulations** (link between models)
- Analysis of impacts and determination of adaptation measures
- Prioritization of measures via **cost-benefit analysis**

Llobregat case study

- Impacts of global change may be very important
- Cost-benefit analysis justify adaptation

Further work

- Final workshop last week of February 2012
- Automatic link between impact analysis and cost benefit analysis
- Application of the tool in other basins

Thanks for your attention!

www.life-waterchange.eu

Thanks to the financial support of LIFE+ financial instrument of the EC

